Multipath TCP: Goals and Background

Mark Handley, UCL
Not your grandfather’s Internet...

- Once upon a time the Internet did email, ftp, and telnet.
 - And it fell over due to congestion.

- TCP congestion control has kept the Internet running every since.
 - Matches load to available capacity on short timescales.
 - On long timescales, needs an external feedback loop to reduce the arrival rate of new connections.
Today

- Very high demands for reliability.
 - Higher than the reliability rate of the network components themselves.

- Demanding applications becoming prevalent.
 - VoIP, IPTV, Games.
Unpredictability

- Can’t predict failures.
- Can’t predict flash crowds.
- Can’t predict DDoS attacks.

- Still need to provide very high reliability service for demanding applications.
Robustness

- General solution to providing robustness:
 - Redundancy

- In the Internet:
 - Routing around failures (rather slow).
 - Multihoming (rather crude).
 - Traffic engineering via routing to cope with the above.
 - DPI and traffic shaping when TE can't cope.
Unpredictability of Wireless

- Wireless links becoming ubiquitous at the network edge.
- Fading, interference, etc make provision of reliable service much harder.

- Many wireless devices do have multiple radios.
 - Can’t currently use these effectively to provide redundancy.
Mobility

- Imagine a phone with 3G and WiFi, moving around a campus.
 - Would like to use 3G as semi-reliable baseline service, supplemented by WiFi when available, and switching between WiFi APs as they come and go.

- Current Internet protocols not designed around such agile network connectivity.
Multipath Transport: The Basic Idea

- Stop hiding multi-homing!
- Make the different network downlinks available to the transport protocol (e.g., give them different addresses).
- Establish more than one path between the same pair of endpoints for the same connection.
- Use congestion control to determine which traffic goes down each of the paths.
Scenarios: Multi-homed server

Client

One TCP connection, two paths

Load balances between access links

Server
Scenarios: Multi-homed server

Client

Flow continues on alternate path

Server

30-second outage while BGP reconverges
Scenarios: Multi-homed server

Client

Traffic moves away from congested path

Server

Legacy Client
Resource Pooling

Network's resources behave like a **single pooled resource**.

- Aim is to increase reliability, flexibility and efficiency.
- Method is to build mechanisms for shifting load between the various parts of the network.

![Diagram of resource pooling]

- Source nodes Src_a, Src_b, and Src_c.
- Destination nodes Dst_a, Dst_b, and Dst_c.
- Bandwidth capacities: 6 Mb/s, 10 Mb/s, and 10 Mb/s.
Resource Pooling is not new...

Computer communication is bursty, so a virtual circuit-based model with rate allocations gives poor utilization.

- A packet-switched network pools the capacity of a single link.
 - Goal: high utilization
- Router queues pool capacity from one time interval to the next
 - Goal: high utilization, robustness to arrival patterns
Multipath transport

- Multipath transport allows multiple links to be treated as a single pooled resource.
- Traffic moves away from congested links.
- Larger bursts can be accommodated.

ARPAnet resource pooling:

Multipath resource pooling:
Resource pooling allows a wider range of traffic matrices.

No multi-path flows

Only flow a is multi-path.

Both flows are multi-path.
Scenario: Mobile Client

Mobile client

3G cell tower

Server
Scenario: Mobile Client

Mobile client

Server

Wifi

Wifi
Scenario: Mobile Client
Scenario: Mobile Client

Mobile client

Server

Wifi

Wifi
Multipath Transport

- Multipath transport protocols seem to be key to making the Internet more robust and more responsive to congestion.
 - Inherent redundancy.
 - Move congestion, not just spread it out over more time.
- React on timescales not possible in routing.
 - May offload work from routing?
Multipath TCP

- TCP is ubiquitous.
- Assertion:
 - Can add multipath capability to TCP fairly easily.
 - Improve behavior of existing applications.
Why *in* TCP, not *over* it?

- Can’t we just do this over TCP?
 - BitTorrent gets many of the benefits while running over TCP.
 - Multi-server HTTP would do the same for multihomed servers.
Why in TCP?

- Only get the full congestion benefits when you link the congestion response of the subflows to move traffic away from congestion.
- Leverage TCP handshake to bootstrap subflows quickly.
- Want it to work for all existing TCP applications.
Other transport protocols?

- **SCTP**
 - Already has the protocol mechanism, just needs to implement the new congestion control mechanisms.

- **DCCP**
 - Would be easy to add, if there was demand.

- **UDP**
 - No single approach.
 - No handshake; maybe an application library?
Multipath TCP

- Has been proposed several times over the years (originally by Huitema?).
- We now understand that multipath TCP, if done appropriately, can go a long way towards solving network-wide traffic engineering problems.
- We’re starting to understand the consequences of not solving the issue in a general way.
Next Presentations

- Alan Ford
 - Multipath TCP Protocol Design

- Costin Raiciu
 - Multipath Congestion Control