
MPTCP Application Considerations

draft-scharf-mptcp-api-00.txt

Michael Scharf <michael.scharf@alcatel-lucent.com>
Alan Ford <alan.ford@roke.co.uk>

November 9, 2009

2 | draft-scharf-mptcp-api-00 | Nov. 2009

Scope

 From MPTCP Charter:

 e. An extended API describing how applications can exploit additional features of
multipath transport. While MPTCP needs to be usable without any application changes,
this API should be an optional extension that provides access to multipath information
and enables control over the usage of multipath.

 Spec of an API, e. g., sockets interface extension

 f. An application considerations document, presenting the impacts that MPTCP may
have on applications, such as performance changes. It should also discuss issues it
create for applications, such as its effects on the usage of IPsec.

 Tutorial-style doc for application developers

 draft-scharf-mptcp-api-00 addresses currently both aspects

 Closely related, since they both deal with the interaction of MPTCP and applications

 Application developers probably have to know both of the implications and the API

 Draft could alternatively be split into two separate documents

3 | draft-scharf-mptcp-api-00 | Nov. 2009

Impact of MPTCP on Applications: Performance Improvement

 General statement: Should never be worse than legacy, single-path TCP

 Throughput

 Higher throughput due to resource pooling

 Potentially exceeding the capacity of a single interface

 Small overhead due to TCP options

 Delay

 Delay jitter of the packet arrivals could be larger

 Application-layer RTT estimation determines average RTT only

 Resilience

 Communication can continue even if a subflow fails

 Automatically handled by MPTCP, but an API may offer some control

4 | draft-scharf-mptcp-api-00 | Nov. 2009

Impact of MPTCP on Applications: Potential Problems

 Impact of middleboxes

 Potential problems of using new TCP options

 Fallback to regular TCP can result in additional handshake delays

 Outdated implicit assumptions

 No one-to-one mapping of socket interface to flow through the network

 Applications that want to use a single path can disable MPTCP

 Security implications

 TBD

 Could include a brief summary of the analysis in draft-bagnulo-mptcp-threat-00

5 | draft-scharf-mptcp-api-00 | Nov. 2009

Implications of MPTCP on Existing Interfaces

 Disabling the Nagle algorithm (TCP_NODELAY option)

 Can be used with MTCP in the same way and affects then all subflows

 Open question: Activation of a different path scheduler algorithm?

 Send and receive buffers (SO_SNDBUF/SO_RCVBUF options)

 Usage of a specific address by app (binding or SO_BINDTODEVICE option)

 MPTCP respects the application’s choice

 TBD: Preferences could be expressed by the extended sockets API

 Impact on existing API calls

 TBD: What data should be returned from getpeername() or getsockname()?

 Idea: Always return first IP address pair

6 | draft-scharf-mptcp-api-00 | Nov. 2009

Open Issues

 Security

 Effects on the usage of IPsec

 Interaction with TLS

 Interactions with other API extensions (SHIM6, HIP, etc.)

 Impact on other interfaces (e. g., routing table)

 Anything we else have overlooked so far?

MPTCP Extended API

draft-scharf-mptcp-api-00.txt

Michael Scharf, Alan Ford

November 9, 2009

8 | draft-scharf-mptcp-api-00 | Nov. 2009

MPTCP Extended API

 MPTCP is designed to be totally backward compatible

 But interface extensions still make sense
 +-------------------------------+

 | Application |
 +-------------------------------+
 ^ |
~~~~~~~~~~~|~Socket Interface|~~~~~~~~~~~
           |                 v
   +-------------------------------+
   |             MPTCP             |
   + - - - - - - - + - - - - - - - +
   | Subflow (TCP) | Subflow (TCP) |
   +-------------------------------+
   |       IP      |      IP       |
   +-------------------------------+

 Objectives of the extended API

 Provide access to multipath information
Examples: Get number of currently used subflows, ...

 Enable control of some aspects of the MPTCP implementation's behaviour
Examples: Turn on/off MPTCP, limit the maximum number of subflows, ...



9 | draft-scharf-mptcp-api-00 | Nov. 2009

Requirements and Key Design Aspects

 Question: Is there a need for different application profiles?
Examples:

 Default: Bulk data transport

 Latency-sensitive transport
(with overflow)

 Latency-sensitive transport
(hot-standby)

 Question: Features and expressiveness of the API?

- Turn on/off
- Set/get number of subflows

- Subflow setup/termination
- Get/set fine-grained policies

- Set/get application profile
- Set/get preferences 

RTT 10ms
RTT 100ms

RTT 10ms
RTT 100ms

RTT 10ms
RTT 100ms

Pooling

Overflow

Hot standby

Degree of control by apps



10 | draft-scharf-mptcp-api-00 | Nov. 2009

Summary

 Current status: Identification of the requirements on the API

 What control functions make sense for an app?

 What information from an app would be beneficial for MPTCP?

 What aspects could perhaps be implicitly determined?

 There is an initial list of requirements in the draft

 As a starting point for the discussion

 At a rather early stage so far

 Any feedback would be welcome!


