Fairness Issues in Software Virtual Routers

Norbert Egi

Computing Dept., Lancaster University, UK: M. Hoerdt, L. Mathy

Dept. of Computer Science, UCL, UK: A. Greenhalgh, F. Huici, M. Handley
Introduction

• **Goal:**
 – Build *high-performance and flexible virtual router* on *x86 commodity hardware*

• **Virtual Routers:**
 – *What is a VR?*
 • Concurrent router instances using the same physical resources
 – *Why do we want to build VRs?*
 • Research world
 • New business models
 • Enabler for Internet innovation
 (We are not limited to IP as the L3 protocol)
Introduction

• **Motivation:**
 – Powerful x86 architectures
 • Multi-core, Multi-CPU
 • Larger-and-larger CPU caches
 • High-speed I/O (PCI-Express)

• **Issues:**
 – Forwarding power
 – I/O virtualization

• **Software:**
 – Click in Linux kernel
 – Xen VMM
Virtual Routers

Can conventional techniques for server virtualization be applied to network router virtualization?
Forwarding in the virtual machines/routers

![Graph showing Forwarding in the virtual machines/routers](image)

- **Below Saturation**
- **At Saturation**
- **Native Performance**
- **Aggregated Virtual Router Performance**

Fairness Issues in Software Virtual Routers, PRESTO'08
Forwarding in the virtual machines/routers

Can conventional techniques for server virtualization be applied to network router virtualization? **Not really.**

Forwarding in the VMs

Forwarding in the Driver Domain only
Virtual Routers

What to do then?

PERFORMANCE

ISOLATION FLEXIBILITY
Virtual Routers

VIRTUALIZED FORWARDING PLANE
(FORWARDER DOMAIN)

CONTROL PLANES

PERFORMANCE

ISOLATION

FLEXIBILITY
Performance issues

- **Bottleneck analysis:**
 - 7.1 Mpps min. sized packets (3.6Gbps)
 - With larger packets (>190 bytes) the lines get saturated (12Gbps)
 - On multi-core systems the bottleneck is the main memory latency
 - Caching matters, avoid packets switching cores
 - Approach similar to S. Ratnasamy et. al.

- In the followings we use only min. sized packets
Packet classification

- *DeMux packets to their VRs:*
 - Software classification
 - Overhead (Have to avoid “unauthorized” packets getting into the memory)
 - Insufficient fairness
 - No hardware support is needed
 - Hardware classification
 - No overhead
 - Fairness guaranteed
 - Multi-queue support is needed
 - Prerequisite for virtual routers
Core allocation + Scheduling

1.) Allocating forwarding paths to cores
- *Global load-balancing* (based on cost and resource entitlement of each forwarding path)

2.) FP scheduling (per core)
- *Fair resource usage*
- Include memory accesses into the scheduler (Future work)
Scenario 1: Static virtual forwarding plane
Scenario 1: Static virtual forwarding plane

3 identical forwarding paths are sharing a single CPU core

Flows have different arrival rates

Actual service rate is the same
Scenario 1: Static virtual forwarding plane

3 cores hosting 6 FPs that are given weighted priorities
Scenario 2: Configurable virtual forwarding plane
Scenario 2: Configurable virtual forwarding plane

3 forwarding paths (2 identical, 1 more expensive) are sharing a single CPU core (Default Click Scheduler)

Flows got a fair share, but they shouldn’t!!!
Scenario 2: Configurable virtual forwarding plane

3 forwarding paths (2 identical, 1 more expensive) are sharing a single CPU core (Extended Click Scheduler)

Expensive flow gets lower throughput
Scenario 3: Costumisable virtual forwarding plane
Scenario 3: Costumisable virtual forwarding plane

Baseline: 3 FPs in dom0

3 FPs in dom0 and 3 domUs forwarding via Xen I/O-channel, each FP and domU posseses a separate core

domU forwarding
Scenario 3: Costumisable virtual forwarding plane

3 FPs in dom0 and 3 domUs forwarding via Xen I/O-channel, the first FP in dom0 and the first domU are sharing a core, the other domains using separate ones.

3 FPs in dom0 and 3 domUs forwarding via Xen I/O-channel, each FP and domU posseses a separate core.
Conclusion

• Modern commodity HW is a viable platform for well-performing software virtual routers

• Forwarding paths with *trusted* elements
 - Adequate isolation and fairness
 - Negligible performance loss

• Forwarding paths with *untrusted* elements
 - Co-exist with trusted forwarding paths
 - Some performance drop for the untrusted forwarding path

• HW assistance and proper mechanisms are needed to overcome the novel system issues
 - Multi-queue NIC
 - Multi-queue support in the virtualization technique
 - NUMA
Q & A