
Wedge: Splitting Applications into
Reduced-Privilege Compartments

Andrea Bittau Petr Marchenko Mark Handley Brad Karp
University College London

April 17, 2008



Vulnerabilities threaten sensitive data

I Exploits allow running arbitrary code on servers.

I An exploited web server can be used to leak sensitive
information such as credit card numbers.

Have we managed to mitigate or prevent vulnerabilities?

 0

 200

 400

 600

 800

 1000

 1998  1999  2000  2001  2002  2003  2004  2005  2006  2007

V
ul

ne
ra

bi
lit

ie
s 

pe
r 

ye
ar

Time (years)

Source: osvdb.org



Process-based privileges are too coarse-grained

Need to keep SSL web server’s RSA private key secret.

Apache worker running as root:

I Can read any file.

Fix: run as nobody.

I Can invoke any system call.

Fix: use systrace, SELinux, . . .

Are we done protecting the private key?

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)



Process-based privileges are too coarse-grained

Need to keep SSL web server’s RSA private key secret.

Apache worker running as root:

I Can read any file.

Fix: run as nobody.

I Can invoke any system call.

Fix: use systrace, SELinux, . . .

Are we done protecting the private key?

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)



Process-based privileges are too coarse-grained

Need to keep SSL web server’s RSA private key secret.

Apache worker running as root:

I Can read any file. Fix: run as nobody.

I Can invoke any system call. Fix: use systrace, SELinux, . . .

Are we done protecting the private key?

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)



Process-based privileges are too coarse-grained

Need to keep SSL web server’s RSA private key secret.

Apache worker running as root:

I Can read any file. Fix: run as nobody.

I Can invoke any system call. Fix: use systrace, SELinux, . . .

Are we done protecting the private key?

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)



Process-based privileges are too coarse-grained

Need to keep SSL web server’s RSA private key secret.

Apache worker running as root:

I Can read any file. Fix: run as nobody.

I Can invoke any system call. Fix: use systrace, SELinux, . . .

Are we done protecting the private key?

master

worker

(create)
(process)

network
/etc/rsa key

(read)

(file)



Problem: processes grant all code access to all memory

Need to keep SSL web server’s RSA private key secret.

This talk: how to limit access of code to memory at fine
granularity.

HTTP parser

SSL engine

private key

(worker process)

(memory)

(code)

network



Problem: processes grant all code access to all memory

Need to keep SSL web server’s RSA private key secret.

This talk: how to limit access of code to memory at fine
granularity.

HTTP parser

SSL engine

private key

(worker process)

(memory)

(code)

network

(read)



Problem: processes grant all code access to all memory

Need to keep SSL web server’s RSA private key secret.

This talk: how to limit access of code to memory at fine
granularity.

HTTP parser

SSL engine

private key

(worker process)

(memory)

(code)

network

(read)



Problem: processes grant all code access to all memory

Need to keep SSL web server’s RSA private key secret.

This talk: how to limit access of code to memory at fine
granularity.

HTTP parser

SSL engine

private key

(worker process)

(memory)

(code)

network

(read)



Old idea: principle of least privilege

Principle of least privilege:

I Partition code into compartments.

I Assign each compartment the minimal privileges it needs for
its operation.

I Restrict interface and interactions between compartments.

How to implement compartments?

I Processes?



Why are traditional processes not sufficient?

Creating compartments with UNIX, e.g., fork:

I Default grant. Child inherits memory map and file descriptors.

Operation of fork

parent

private key

/etc/passwd

Default-deny: inherit nothing from parent. Closer to least-privilege.



Why are traditional processes not sufficient?

Creating compartments with UNIX, e.g., fork:

I Default grant. Child inherits memory map and file descriptors.

Operation of fork

parent

private key

/etc/passwd

fork child

Default-deny: inherit nothing from parent. Closer to least-privilege.



Why are traditional processes not sufficient?

Creating compartments with UNIX, e.g., fork:

I Default grant. Child inherits memory map and file descriptors.

Operation of fork

parent

private key

/etc/passwd

fork child

Default-deny: inherit nothing from parent. Closer to least-privilege.



But default-deny is difficult to use for legacy code

How many permissions do we need to explicitly grant?

HTTP parser

SSL engine

private key

(worker process)

(memory)

(code)

network

Apache’s client handler uses over 600 memory objects.



But default-deny is difficult to use for legacy code

How many permissions do we need to explicitly grant?

WorkerWorker

Apache’s client handler uses over 600 memory objects.



Contributions

I New system calls for default-deny.
I Creating compartments.
I Specifying privileges.

I Tools to make default-deny usable when partitioning
legacy code.

I Identifying the privileges for compartments.



Outline

1. Wedge.
I New system calls for default-deny.
I Crowbar: tool for partitioning legacy code.

2. Wedge applied to Apache+OpenSSL.



sthreads: default-deny compartments

parent

private key

/etc/passwd

I Like processes, but default-deny.

I Like threads: can easily share pointers and file descriptors.

I Programmer must explicitly grant all permissions.



sthreads: default-deny compartments

parent

private key

/etc/passwd

sthread create child

(sthread)

I Like processes, but default-deny.

I Like threads: can easily share pointers and file descriptors.

I Programmer must explicitly grant all permissions.



Virtual memory

{
char *key, *buffer;
char *config;
key = malloc(16);
buffer = malloc(80);
…

config = malloc(128);
}

page n

page n+1

parser



Tagged memory

{
tag = tag_new();
key = malloc(16);
buffer =

smalloc(80,tag);
…

config =
smalloc(128,tag);

}

page n

page n+1

parser



How can sthreads use sensitive data? Callgates.

Problem: unprivileged code cannot access sensitive data directly
but must still use it.

parser

private key

Callgates: an entry-point with predefined privileges.

I Callgates are created and invoked at a later time.

I At creation, a subset of creator’s privileges is given to callgate.

I At invocation, code is run with creation privileges.



How can sthreads use sensitive data? Callgates.

Problem: unprivileged code cannot access sensitive data directly
but must still use it.

parser

private keysession key

Callgates: an entry-point with predefined privileges.

I Callgates are created and invoked at a later time.

I At creation, a subset of creator’s privileges is given to callgate.

I At invocation, code is run with creation privileges.



How can sthreads use sensitive data? Callgates.

Problem: unprivileged code cannot access sensitive data directly
but must still use it.

client handler

private keysession key

setup session key
invoke

Callgates: an entry-point with predefined privileges.

I Callgates are created and invoked at a later time.

I At creation, a subset of creator’s privileges is given to callgate.

I At invocation, code is run with creation privileges.



How can sthreads use sensitive data? Callgates.

Problem: unprivileged code cannot access sensitive data directly
but must still use it.

client handler

private keysession key

setup session key
invoke

Callgates: an entry-point with predefined privileges.

I Callgates are created and invoked at a later time.

I At creation, a subset of creator’s privileges is given to callgate.

I At invocation, code is run with creation privileges.



Summary: Wedge applied to Apache

client handler

session key

setup session key

private key

I Sthreads: default-deny compartments—low privilege.

I Callgates: privilege elevation—high privilege.

I Tagged memory: naming memory for privilege specification.



Ad-hoc code study?

WorkerWorker

Apache’s client handler needs access to 222 heap objects and 389
globals. Need to read 72 source files (for heap only).

1. Which code is executed?
2. What objects do pointers point to?
3. Where were objects allocated?

If privilege is omitted, you get a crash—repeat until no crashes.



Static analysis of memory accesses?

Static analysis for C code does not have runtime context (e.g.,
format string for printf).

Consequences:

I May fail. e.g., function pointers.

I If conservative, may give superset of privileges actually
needed. e.g., may follow code paths corresponding to exploits!



Crowbar: runtime analysis of memory accesses

Dynamic analysis yields least privilege:

parser

GET URL POST data private key

Server uses minimal privileges to execute an innocuous request.

1. Use runtime instrumentation to produce memory trace.

2. Train using benign requests.

Need to ensure high trace coverage, e.g., with test suite.



Crowbar: runtime analysis of memory accesses

Dynamic analysis yields least privilege:

parser

GET URL POST data private key

Server uses minimal privileges to execute an innocuous request.

1. Use runtime instrumentation to produce memory trace.

2. Train using benign requests.

Need to ensure high trace coverage, e.g., with test suite.



Crowbar: runtime analysis of memory accesses

Dynamic analysis yields least privilege:

parser

GET URL POST data private key

Server uses minimal privileges to execute an innocuous request.

1. Use runtime instrumentation to produce memory trace.

2. Train using benign requests.

Need to ensure high trace coverage, e.g., with test suite.



Outline

1. Wedge.
I New system calls for default-deny.
I Crowbar: tool for partitioning legacy code.

2. Wedge applied to Apache+OpenSSL.



Protecting keys and sensitive user data

Goal: protect sensitive data (e.g., credit card).

client handler

session key

setup session key

private key

Have we protected sensitive data? Are we done?

Threat models, with increasing complexity:

1. Passive eavesdropping and server exploit.

2. Active man-in-the-middle and server exploit.



Protecting keys and sensitive user data

Goal: protect sensitive data (e.g., credit card).

client handler

session key

setup session key

private key

Have we protected sensitive data? Are we done?

Threat models, with increasing complexity:

1. Passive eavesdropping and server exploit.

2. Active man-in-the-middle and server exploit.



Attacker can generate arbitrary session key

Session key components exchanged during SSL handshake

client server
client random

server random

encrypted pre-master secret



Attacker can generate arbitrary session key

Session key components exchanged during SSL handshake

client server
client random

server random

encrypted pre-master secret

setup session keyclient handler

private key



Attacker can generate arbitrary session key

Session key components exchanged during SSL handshake

client server
client random

server random

encrypted pre-master secret

setup session keyclient handler

private key

client random

encrypted pre-master secret
server random



Attacker can generate arbitrary session key

Session key components exchanged during SSL handshake

client server
client random

server random

encrypted pre-master secret

setup session keyclient handler

private key

client random

encrypted pre-master secret
server random

session key



Attacker can generate arbitrary session key

Session key components exchanged during SSL handshake

client server
client random

server random

encrypted pre-master secret

setup session keyclient handler

private key

client random

encrypted pre-master secret
server random

session key

HAC
KE

D



Attacker can generate arbitrary session key

Session key components exchanged during SSL handshake

client server
client random

server random

encrypted pre-master secret

setup session keyclient handler

private key

client random

encrypted pre-master secret

random session key



Preventing arbitrary session key leak

client handler

session key

setup session key

private key

Attacker exploiting client handler:

I Has no control over server random and session key generation.

I Cannot generate session key of eavesdropped sessions.

I Can only obtain a new, personal session key.



Preventing arbitrary session key leak

client handler

session key

setup session key

private key

server random

Attacker exploiting client handler:

I Has no control over server random and session key generation.

I Cannot generate session key of eavesdropped sessions.

I Can only obtain a new, personal session key.



Vulnerable to man-in-the-middle

Disclosing session key causes a security breach with
man-in-the-middle (MITM) attacks:

client MITM server



Vulnerable to man-in-the-middle

Disclosing session key causes a security breach with
man-in-the-middle (MITM) attacks:

client MITM server

client random

server random

pre-master secret



Vulnerable to man-in-the-middle

Disclosing session key causes a security breach with
man-in-the-middle (MITM) attacks:

client MITM server

client random

server random

pre-master secret
exploit

session key



Vulnerable to man-in-the-middle

Disclosing session key causes a security breach with
man-in-the-middle (MITM) attacks:

client MITM server

client random

server random

pre-master secret
exploit

session keyEnd of handshake

Encryption starts



Vulnerable to man-in-the-middle

Disclosing session key causes a security breach with
man-in-the-middle (MITM) attacks:

client MITM server

client random

server random

pre-master secret
exploit

session keyEnd of handshake

Encryption starts

POST cardnum



Vulnerable to man-in-the-middle

Disclosing session key causes a security breach with
man-in-the-middle (MITM) attacks:

client MITM server

client random

server random

pre-master secret
exploit

session keyEnd of handshake

Encryption starts

POST cardnum



Man-in-the-middle defense overview

Can we protect against a MITM that has also exploited the server?

master

SSL handshake

network

(clear-text)

Strategy:

1. Prevent session key disclosure during handshake.

2. MITM cannot exploit client handler without session key:
packets with invalid MAC will be dropped.



Man-in-the-middle defense overview

Can we protect against a MITM that has also exploited the server?

master

SSL handshake

network

(clear-text)

client handler

(MACed channel)

Strategy:

1. Prevent session key disclosure during handshake.

2. MITM cannot exploit client handler without session key:
packets with invalid MAC will be dropped.



Implementation

Sthreads:

I Linux v2.6.19. 496 line diff, 1485 line module.

I Userland library: 1154 lines.

Crowbar:

I Binary instrumentation tool (using Pin): 2391 lines.

I Post processor: 959 lines.

Applications we partitioned using Wedge:

I Apache+OpenSSL.

I OpenSSH (prior to privilege separation).



Wedge reduces size of privileged code

Have we reduced the size of the privileged code?

Line counts in Wedge’s Apache+SSL

Component Line count Percentage

Apache+OpenSSL total 252,030 100%
Default config after accept 60,844
Callgates total (privileged) 15,769 6%

Lines changed when partitioning: 1,700 (0.7%).



Wedge reduces size of privileged code

Have we reduced the size of the privileged code?

Line counts in Wedge’s Apache+SSL

Component Line count Percentage

Apache+OpenSSL total 252,030 100%
Default config after accept 60,844
Callgates total (privileged) 15,769 6%

Lines changed when partitioning: 1,700 (0.7%).



Crowbar performs acceptably for developers

Crowbar is used by developers for partitioning. It is not an
overhead seen during production run-time.

Does Crowbar perform acceptably for developers?

I A trace for Apache was obtained in 15s.

I Traces for SPEC applications: 82s on average.

Anecdotally, one trace was enough for our Apache (and OpenSSH)
partitioning.



Enhanced privacy at acceptable cost

Throughput of many clients retrieving small static page:

No sessions cached

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Vanilla Wedge

R
eq

ue
st

s/
s

x
0.53x

All sessions cached

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Vanilla Wedge

R
eq

ue
st

s/
s

x

0.22x

I Vanilla reuses workers—we create new sthreads.

I We create many compartments & callgates per session.



Enhanced privacy at acceptable cost

Throughput of many clients retrieving small static page:

No sessions cached

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Vanilla Wedge

R
eq

ue
st

s/
s

x
0.53x

All sessions cached

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Vanilla Wedge

R
eq

ue
st

s/
s

x

0.22x

I Vanilla reuses workers—we create new sthreads.

I We create many compartments & callgates per session.



Related work

We build on privilege separation: OpenSSH, OKWS, Privtrans

I Wedge allows finer-grained partitioning, and with default-deny,
encourages tighter privileges for each compartment.

DIFC: JIF, Asbestos, HiStar, Flume, DStar

I Crowbar is complementary: could help partitioning legacy
code in DIFC systems.

I Wedge does not allow unprivileged code to compute over
sensitive data.



Conclusion

Wedge:

I Generalizes privilege separation and provides primitives for
fine-grained default-deny partitioning of applications.

I Crowbar: tool to aid in partitioning legacy code.

Wedge enables fine-grained partitioning of legacy code:

I Programmers can defend applications against stronger
adversaries and more complex threat models than those
addressed to date.

http://nrg.cs.ucl.ac.uk/wedge/

http://nrg.cs.ucl.ac.uk/wedge/

	Introduction
	Wedge
	Evaluation
	Conclusion

